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Excited states calculation is an important tool in the study of collective motion of many particle sys-
tems, ranging from silicon nanoparticles and nanoscale materials to the analysis of interstellar clouds.
In computational quantum physics and chemistry, the excitation states are described by the linear
response perturbation analysis in the time-dependent density functional theory (TDDFT). There are
immense interests in developing efficient numerical algorithms and simulation techniques for excita-
tion state calculations of molecules and solids for materials design in energy science; see, for example,
recently funded DOE SciDAC BES projects (http://www.orau.gov/scidac3pi2012/agenda.htm).

TDDFT is an extension of the density functional theory (DFT), and is used to investigate the
properties and dynamics of many-body systems in the presence of time-dependent potentials, such
as electric or magnetic fields [1]. The effect of such fields on molecules and solids can be studied
with TDDFT to extract features like excitation energies, frequency-dependent response properties,
and photoabsorption spectra. Although the conceptual and computational foundations of DFT and
TDDFT are analogous, TDDFT calculations are more complex and expensive, most notably because
the time-dependent effective potential at any given instant depends on the density value at previous
time. To simplify the TDDFT calculation, one assumes that the external perturbation is small in the
sense that it does not completely destroy the ground-state structure of the system. In this case, it is
sufficient to analyze the linear response of the system. The variation of the system will then depend
only on, to the first order, the ground-state wave-functions [1].

The computational kernel of the linear-response TDDFT, such as in electronic structure calcula-
tion packages castep, quantum expresso and octopus, is to solve the following so-called Linear

Response Eigenvalue Problem (LREVP):
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where A and B are n× n real symmetric matrices and A±B are positive definite, Σ and ∆ are also
n×n with Σ being symmetric while ∆ skew-symmetric (i.e., ∆T = −∆) and Σ±∆ are nonsingular. It
can be shown that the eigenvalues of LREVP are real and appear in pairs ±λ. The first few smallest
positive eigenvalues and the corresponding eigenvectors give rise to the approximates of the excitation
energies of the molecular system. Due to the nature of the linear response TDDFT, the order of
LREVP is very large. For example, a plane-wave based TDDFT calculation for the excited energies
of fullerence C60 in quantum expresso can lead to an LREVP of the order 22 millions [6].

Since the linear response theory was proposed by Bohm and Pines for studying the collective motion
of many particles in the early 1950s, the development of numerical methods for solving the LREVP has
been an active research subject in computational (quantum) physics and chemistry, and in numerical
analysis community for over four decades. A 2009 survey study [2] compared four numerical methods
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(namely Lanczos, Arnoldi, Davidson, and CG), and discussed the limitations of each of these methods
for developing an efficient scalable eigensolver. In the study, severe limitations were experienced for
the Lanczos-type methods due to the orthogonality constraints, for the CG type methods to compute
several eigenpairs simultaneously, and for incorporating preconditioning techniques.

In the past two years, we have conducted a systematical study of the theory, computation, and
applications of the LREVP. We uncovered new and surprising minimization principles to character-
ize the eigenvalues of interest. Although the LREVP is a non-Hermitian eigenvalue problem, these
theoretical results mirror the well-known results for the Hermitian eigenvalue problem [4].

With the help of these new theoretical results, we are able to develop the best (possible) approx-
imations of few smallest positive eigenvalues via structure-preserving projection, and derive locally
optimal steepest descent and conjugate gradient-like algorithms, based on a novel 4D search idea
instead of the usual line-search, as well as block algorithms for simultaneously computing these eigen-
values and their associate eigenvectors [3, 5]. A successful excited state calculation of the order 22
millions of the LREVP for fullerence C60 by our methods was recently presented in [6].

The newly developed locally optimal block 4D CG algorithms allow us to use blocking strategies to
perform multiple computation steps of the algorithm for each communication step and to incorporate
proper preconditioners for fast convergence. Furthermore, unlike the Arnoldi and Lanczos type Krylov
subspace methods, the block 4D CG-like algorithms are memory-efficient, and numerical convergence
behavior is less stringent on the (orthogonal-like) normalization constraints of projection subspaces.
However, towards a fully communication-avoiding approach for exascale computing, we must derive
new parallel computation and communication strategies. On modern computer architectures, com-
munication costs in terms of the performance of an algorithm can be much greater than arithmetic
computation costs, and the gap is only going to widen in future systems [7]. One of our research issues
is how to efficiently computing matrix-vector and matrix-matrix operations by exploiting the matrix
(sub)-structures and sparsity of the LREVP. Another issue is how to hide costly global synchronization
latency. This is in fact a challenge for the scalability for all preconditioned CG and Krylov subspace
type eigensolvers. Furthermore, for the new LREVP solver to be integrated into existing electronic
structure calculation packages, we should also study how to provide flexible interfaces which can easily
incorporate physical-based preconditioners.
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